## ripemd.py - pure Python implementation of the RIPEMD-160 algorithm. ## Bjorn Edstrom 16 december 2007. ## ## Copyrights ## ========== ## ## This code is a derived from an implementation by Markus Friedl which is ## subject to the following license. This Python implementation is not ## subject to any other license. ## ##/* ## * Copyright (c) 2001 Markus Friedl. All rights reserved. ## * ## * Redistribution and use in source and binary forms, with or without ## * modification, are permitted provided that the following conditions ## * are met: ## * 1. Redistributions of source code must retain the above copyright ## * notice, this list of conditions and the following disclaimer. ## * 2. Redistributions in binary form must reproduce the above copyright ## * notice, this list of conditions and the following disclaimer in the ## * documentation and/or other materials provided with the distribution. ## * ## * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ## * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ## * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ## * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ## * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ## * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ## * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ## */ ##/* ## * Preneel, Bosselaers, Dobbertin, "The Cryptographic Hash Function RIPEMD-160", ## * RSA Laboratories, CryptoBytes, Volume 3, Number 2, Autumn 1997, ## * ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf ## */ try: import psyco psyco.full() except ImportError: pass #block_size = 1 digest_size = 20 digestsize = 20 class RIPEMD160: """Return a new RIPEMD160 object. An optional string argument may be provided; if present, this string will be automatically hashed.""" def __init__(self, arg=None): self.ctx = RMDContext() if arg: self.update(arg) self.dig = None def update(self, arg): """update(arg)""" RMD160Update(self.ctx, arg, len(arg)) self.dig = None def digest(self): """digest()""" if self.dig: return self.dig ctx = self.ctx.copy() self.dig = RMD160Final(self.ctx) self.ctx = ctx return self.dig def hexdigest(self): """hexdigest()""" dig = self.digest() hex_digest = '' for d in dig: hex_digest += '%02x' % ord(d) return hex_digest def copy(self): """copy()""" import copy return copy.deepcopy(self) def new(arg=None): """Return a new RIPEMD160 object. An optional string argument may be provided; if present, this string will be automatically hashed.""" return RIPEMD160(arg) # # Private. # class RMDContext: def __init__(self): self.state = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0] # uint32 self.count = 0 # uint64 self.buffer = [0]*64 # uchar def copy(self): ctx = RMDContext() ctx.state = self.state[:] ctx.count = self.count ctx.buffer = self.buffer[:] return ctx K0 = 0x00000000 K1 = 0x5A827999 K2 = 0x6ED9EBA1 K3 = 0x8F1BBCDC K4 = 0xA953FD4E KK0 = 0x50A28BE6 KK1 = 0x5C4DD124 KK2 = 0x6D703EF3 KK3 = 0x7A6D76E9 KK4 = 0x00000000 def ROL(n, x): return ((x << n) & 0xffffffff) | (x >> (32 - n)) def F0(x, y, z): return x ^ y ^ z def F1(x, y, z): return (x & y) | (((~x) % 0x100000000) & z) def F2(x, y, z): return (x | ((~y) % 0x100000000)) ^ z def F3(x, y, z): return (x & z) | (((~z) % 0x100000000) & y) def F4(x, y, z): return x ^ (y | ((~z) % 0x100000000)) def R(a, b, c, d, e, Fj, Kj, sj, rj, X): a = ROL(sj, (a + Fj(b, c, d) + X[rj] + Kj) % 0x100000000) + e c = ROL(10, c) return a % 0x100000000, c PADDING = [0x80] + [0]*63 import sys import struct def RMD160Transform(state, block): #uint32 state[5], uchar block[64] x = [0]*16 if sys.byteorder == 'little': x = struct.unpack('<16L', ''.join([chr(x) for x in block[0:64]])) else: raise "Error!!" a = state[0] b = state[1] c = state[2] d = state[3] e = state[4] #/* Round 1 */ a, c = R(a, b, c, d, e, F0, K0, 11, 0, x); e, b = R(e, a, b, c, d, F0, K0, 14, 1, x); d, a = R(d, e, a, b, c, F0, K0, 15, 2, x); c, e = R(c, d, e, a, b, F0, K0, 12, 3, x); b, d = R(b, c, d, e, a, F0, K0, 5, 4, x); a, c = R(a, b, c, d, e, F0, K0, 8, 5, x); e, b = R(e, a, b, c, d, F0, K0, 7, 6, x); d, a = R(d, e, a, b, c, F0, K0, 9, 7, x); c, e = R(c, d, e, a, b, F0, K0, 11, 8, x); b, d = R(b, c, d, e, a, F0, K0, 13, 9, x); a, c = R(a, b, c, d, e, F0, K0, 14, 10, x); e, b = R(e, a, b, c, d, F0, K0, 15, 11, x); d, a = R(d, e, a, b, c, F0, K0, 6, 12, x); c, e = R(c, d, e, a, b, F0, K0, 7, 13, x); b, d = R(b, c, d, e, a, F0, K0, 9, 14, x); a, c = R(a, b, c, d, e, F0, K0, 8, 15, x); #/* #15 */ #/* Round 2 */ e, b = R(e, a, b, c, d, F1, K1, 7, 7, x); d, a = R(d, e, a, b, c, F1, K1, 6, 4, x); c, e = R(c, d, e, a, b, F1, K1, 8, 13, x); b, d = R(b, c, d, e, a, F1, K1, 13, 1, x); a, c = R(a, b, c, d, e, F1, K1, 11, 10, x); e, b = R(e, a, b, c, d, F1, K1, 9, 6, x); d, a = R(d, e, a, b, c, F1, K1, 7, 15, x); c, e = R(c, d, e, a, b, F1, K1, 15, 3, x); b, d = R(b, c, d, e, a, F1, K1, 7, 12, x); a, c = R(a, b, c, d, e, F1, K1, 12, 0, x); e, b = R(e, a, b, c, d, F1, K1, 15, 9, x); d, a = R(d, e, a, b, c, F1, K1, 9, 5, x); c, e = R(c, d, e, a, b, F1, K1, 11, 2, x); b, d = R(b, c, d, e, a, F1, K1, 7, 14, x); a, c = R(a, b, c, d, e, F1, K1, 13, 11, x); e, b = R(e, a, b, c, d, F1, K1, 12, 8, x); #/* #31 */ #/* Round 3 */ d, a = R(d, e, a, b, c, F2, K2, 11, 3, x); c, e = R(c, d, e, a, b, F2, K2, 13, 10, x); b, d = R(b, c, d, e, a, F2, K2, 6, 14, x); a, c = R(a, b, c, d, e, F2, K2, 7, 4, x); e, b = R(e, a, b, c, d, F2, K2, 14, 9, x); d, a = R(d, e, a, b, c, F2, K2, 9, 15, x); c, e = R(c, d, e, a, b, F2, K2, 13, 8, x); b, d = R(b, c, d, e, a, F2, K2, 15, 1, x); a, c = R(a, b, c, d, e, F2, K2, 14, 2, x); e, b = R(e, a, b, c, d, F2, K2, 8, 7, x); d, a = R(d, e, a, b, c, F2, K2, 13, 0, x); c, e = R(c, d, e, a, b, F2, K2, 6, 6, x); b, d = R(b, c, d, e, a, F2, K2, 5, 13, x); a, c = R(a, b, c, d, e, F2, K2, 12, 11, x); e, b = R(e, a, b, c, d, F2, K2, 7, 5, x); d, a = R(d, e, a, b, c, F2, K2, 5, 12, x); #/* #47 */ #/* Round 4 */ c, e = R(c, d, e, a, b, F3, K3, 11, 1, x); b, d = R(b, c, d, e, a, F3, K3, 12, 9, x); a, c = R(a, b, c, d, e, F3, K3, 14, 11, x); e, b = R(e, a, b, c, d, F3, K3, 15, 10, x); d, a = R(d, e, a, b, c, F3, K3, 14, 0, x); c, e = R(c, d, e, a, b, F3, K3, 15, 8, x); b, d = R(b, c, d, e, a, F3, K3, 9, 12, x); a, c = R(a, b, c, d, e, F3, K3, 8, 4, x); e, b = R(e, a, b, c, d, F3, K3, 9, 13, x); d, a = R(d, e, a, b, c, F3, K3, 14, 3, x); c, e = R(c, d, e, a, b, F3, K3, 5, 7, x); b, d = R(b, c, d, e, a, F3, K3, 6, 15, x); a, c = R(a, b, c, d, e, F3, K3, 8, 14, x); e, b = R(e, a, b, c, d, F3, K3, 6, 5, x); d, a = R(d, e, a, b, c, F3, K3, 5, 6, x); c, e = R(c, d, e, a, b, F3, K3, 12, 2, x); #/* #63 */ #/* Round 5 */ b, d = R(b, c, d, e, a, F4, K4, 9, 4, x); a, c = R(a, b, c, d, e, F4, K4, 15, 0, x); e, b = R(e, a, b, c, d, F4, K4, 5, 5, x); d, a = R(d, e, a, b, c, F4, K4, 11, 9, x); c, e = R(c, d, e, a, b, F4, K4, 6, 7, x); b, d = R(b, c, d, e, a, F4, K4, 8, 12, x); a, c = R(a, b, c, d, e, F4, K4, 13, 2, x); e, b = R(e, a, b, c, d, F4, K4, 12, 10, x); d, a = R(d, e, a, b, c, F4, K4, 5, 14, x); c, e = R(c, d, e, a, b, F4, K4, 12, 1, x); b, d = R(b, c, d, e, a, F4, K4, 13, 3, x); a, c = R(a, b, c, d, e, F4, K4, 14, 8, x); e, b = R(e, a, b, c, d, F4, K4, 11, 11, x); d, a = R(d, e, a, b, c, F4, K4, 8, 6, x); c, e = R(c, d, e, a, b, F4, K4, 5, 15, x); b, d = R(b, c, d, e, a, F4, K4, 6, 13, x); #/* #79 */ aa = a; bb = b; cc = c; dd = d; ee = e; a = state[0] b = state[1] c = state[2] d = state[3] e = state[4] #/* Parallel round 1 */ a, c = R(a, b, c, d, e, F4, KK0, 8, 5, x) e, b = R(e, a, b, c, d, F4, KK0, 9, 14, x) d, a = R(d, e, a, b, c, F4, KK0, 9, 7, x) c, e = R(c, d, e, a, b, F4, KK0, 11, 0, x) b, d = R(b, c, d, e, a, F4, KK0, 13, 9, x) a, c = R(a, b, c, d, e, F4, KK0, 15, 2, x) e, b = R(e, a, b, c, d, F4, KK0, 15, 11, x) d, a = R(d, e, a, b, c, F4, KK0, 5, 4, x) c, e = R(c, d, e, a, b, F4, KK0, 7, 13, x) b, d = R(b, c, d, e, a, F4, KK0, 7, 6, x) a, c = R(a, b, c, d, e, F4, KK0, 8, 15, x) e, b = R(e, a, b, c, d, F4, KK0, 11, 8, x) d, a = R(d, e, a, b, c, F4, KK0, 14, 1, x) c, e = R(c, d, e, a, b, F4, KK0, 14, 10, x) b, d = R(b, c, d, e, a, F4, KK0, 12, 3, x) a, c = R(a, b, c, d, e, F4, KK0, 6, 12, x) #/* #15 */ #/* Parallel round 2 */ e, b = R(e, a, b, c, d, F3, KK1, 9, 6, x) d, a = R(d, e, a, b, c, F3, KK1, 13, 11, x) c, e = R(c, d, e, a, b, F3, KK1, 15, 3, x) b, d = R(b, c, d, e, a, F3, KK1, 7, 7, x) a, c = R(a, b, c, d, e, F3, KK1, 12, 0, x) e, b = R(e, a, b, c, d, F3, KK1, 8, 13, x) d, a = R(d, e, a, b, c, F3, KK1, 9, 5, x) c, e = R(c, d, e, a, b, F3, KK1, 11, 10, x) b, d = R(b, c, d, e, a, F3, KK1, 7, 14, x) a, c = R(a, b, c, d, e, F3, KK1, 7, 15, x) e, b = R(e, a, b, c, d, F3, KK1, 12, 8, x) d, a = R(d, e, a, b, c, F3, KK1, 7, 12, x) c, e = R(c, d, e, a, b, F3, KK1, 6, 4, x) b, d = R(b, c, d, e, a, F3, KK1, 15, 9, x) a, c = R(a, b, c, d, e, F3, KK1, 13, 1, x) e, b = R(e, a, b, c, d, F3, KK1, 11, 2, x) #/* #31 */ #/* Parallel round 3 */ d, a = R(d, e, a, b, c, F2, KK2, 9, 15, x) c, e = R(c, d, e, a, b, F2, KK2, 7, 5, x) b, d = R(b, c, d, e, a, F2, KK2, 15, 1, x) a, c = R(a, b, c, d, e, F2, KK2, 11, 3, x) e, b = R(e, a, b, c, d, F2, KK2, 8, 7, x) d, a = R(d, e, a, b, c, F2, KK2, 6, 14, x) c, e = R(c, d, e, a, b, F2, KK2, 6, 6, x) b, d = R(b, c, d, e, a, F2, KK2, 14, 9, x) a, c = R(a, b, c, d, e, F2, KK2, 12, 11, x) e, b = R(e, a, b, c, d, F2, KK2, 13, 8, x) d, a = R(d, e, a, b, c, F2, KK2, 5, 12, x) c, e = R(c, d, e, a, b, F2, KK2, 14, 2, x) b, d = R(b, c, d, e, a, F2, KK2, 13, 10, x) a, c = R(a, b, c, d, e, F2, KK2, 13, 0, x) e, b = R(e, a, b, c, d, F2, KK2, 7, 4, x) d, a = R(d, e, a, b, c, F2, KK2, 5, 13, x) #/* #47 */ #/* Parallel round 4 */ c, e = R(c, d, e, a, b, F1, KK3, 15, 8, x) b, d = R(b, c, d, e, a, F1, KK3, 5, 6, x) a, c = R(a, b, c, d, e, F1, KK3, 8, 4, x) e, b = R(e, a, b, c, d, F1, KK3, 11, 1, x) d, a = R(d, e, a, b, c, F1, KK3, 14, 3, x) c, e = R(c, d, e, a, b, F1, KK3, 14, 11, x) b, d = R(b, c, d, e, a, F1, KK3, 6, 15, x) a, c = R(a, b, c, d, e, F1, KK3, 14, 0, x) e, b = R(e, a, b, c, d, F1, KK3, 6, 5, x) d, a = R(d, e, a, b, c, F1, KK3, 9, 12, x) c, e = R(c, d, e, a, b, F1, KK3, 12, 2, x) b, d = R(b, c, d, e, a, F1, KK3, 9, 13, x) a, c = R(a, b, c, d, e, F1, KK3, 12, 9, x) e, b = R(e, a, b, c, d, F1, KK3, 5, 7, x) d, a = R(d, e, a, b, c, F1, KK3, 15, 10, x) c, e = R(c, d, e, a, b, F1, KK3, 8, 14, x) #/* #63 */ #/* Parallel round 5 */ b, d = R(b, c, d, e, a, F0, KK4, 8, 12, x) a, c = R(a, b, c, d, e, F0, KK4, 5, 15, x) e, b = R(e, a, b, c, d, F0, KK4, 12, 10, x) d, a = R(d, e, a, b, c, F0, KK4, 9, 4, x) c, e = R(c, d, e, a, b, F0, KK4, 12, 1, x) b, d = R(b, c, d, e, a, F0, KK4, 5, 5, x) a, c = R(a, b, c, d, e, F0, KK4, 14, 8, x) e, b = R(e, a, b, c, d, F0, KK4, 6, 7, x) d, a = R(d, e, a, b, c, F0, KK4, 8, 6, x) c, e = R(c, d, e, a, b, F0, KK4, 13, 2, x) b, d = R(b, c, d, e, a, F0, KK4, 6, 13, x) a, c = R(a, b, c, d, e, F0, KK4, 5, 14, x) e, b = R(e, a, b, c, d, F0, KK4, 15, 0, x) d, a = R(d, e, a, b, c, F0, KK4, 13, 3, x) c, e = R(c, d, e, a, b, F0, KK4, 11, 9, x) b, d = R(b, c, d, e, a, F0, KK4, 11, 11, x) #/* #79 */ t = (state[1] + cc + d) % 0x100000000; state[1] = (state[2] + dd + e) % 0x100000000; state[2] = (state[3] + ee + a) % 0x100000000; state[3] = (state[4] + aa + b) % 0x100000000; state[4] = (state[0] + bb + c) % 0x100000000; state[0] = t % 0x100000000; pass def RMD160Update(ctx, inp, inplen): if type(inp) == str: inp = [ord(i)&0xff for i in inp] have = (ctx.count / 8) % 64 need = 64 - have ctx.count += 8 * inplen off = 0 if inplen >= need: if have: for i in xrange(need): ctx.buffer[have+i] = inp[i] RMD160Transform(ctx.state, ctx.buffer) off = need have = 0 while off + 64 <= inplen: RMD160Transform(ctx.state, inp[off:]) #<--- off += 64 if off < inplen: # memcpy(ctx->buffer + have, input+off, len-off); for i in xrange(inplen - off): ctx.buffer[have+i] = inp[off+i] def RMD160Final(ctx): size = struct.pack("